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In a separable Hilbert space H, greedy algorithms iteratively define m-term
approximants to a given vector from a complete redundant dictionary D. With very
large dictionaries, the pure greedy algorithm cannot be implemented and must be
replaced with a weak greedy algorithm. In numerical applications, partially greedy
algorithms have been introduced to reduce the numerical complexity. A conjecture
about their convergence arises naturally from the observation of numerical
experiments. We introduce, study and disprove this conjecture. � 2001 Academic Press
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1. INTRODUCTION

Given a complete dictionary D of unit vectors (or atoms) in a separable
Hilbert space H, one can consider the approximations of a vector R1 by
linear combinations of atoms taken from D. When the dictionary is indeed
an orthonormal basis, the best m-term approximation to R1 can actually be
constructed. But whenever the dictionary is redundant, there is no unique
linear decomposition of R1 , and the best m-term approximation may be
difficult to build. A greedy algorithm (known as Matching Pursuit in signal
processing [8], or Projection Pursuit in statistics [6]) provides such an
m-term approximation by constructing a sequence Rm # H, m�1 such that
at each step

Rm=(Rm , gm) gm+Rm+1 , gm # D (1)
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with

|(Rm , gm) |=sup
g # D

|(Rm , g) |. (2)

The resulting m-term expansion of R1 is

R1=(R1 , g1) g1+(R2 , g2) g2+ } } } +(Rm , gm) gm+Rm+1 . (3)

Weak (resp. strong) convergence of Rm to zero was proved by [6] (resp.
[7]) for the case of D=[unit ridge functions in L2 (P)] with P a probabil-
ity measure on a Euclidean space. When the dictionary D is very large, the
choice (2) of the best atom from D may be so computationnaly costly that
a sub-optimal choice has to be considered. In [7], the convergence of
greedy algorithms (for D=[unit ridge functions]) was also proved under
the weaker sufficient condition

|(Rm , gm) |�tm sup
g # D

|(Rm , g) | (4)

(see Eq. (2) in [7]) provided that tm is greater or equal to some positive
t. The results of [7] were extended to the case of general dictionaries in
[9]. In [10] the stronger result of convergence whenever �m tm �m=� is
proved, and the remark was made that divergence may occur when
�m t2

m<�. An open question consists in filling the gap between these two
conditions on tm .

In [1, 2], a Matching Pursuit with sub-dictionaries of local maxima of
D was defined for the approximation of images. The same technique was
developped in [4, 5] in order to accelerate the analysis of sound signals.
At the iteration mp , a sub-dictionary Dp of local maxima is built that con-
tains the best atom for this iteration. Between iterations mp and mp+1&1,
the best atom from Dp is selected. The convergence of such an algorithm
was proved [1] under the restrictive assumption that mp+1&mp is bounded.
The proof used the convergence of weak gready algorithms [7, 9]. The
results from [10] show that a weaker sufficient condition for the con-
vergence of this algorithm is �p

1
mp

=�. For example if mp= p log p, there
is convergence but mp+1&mp is not bounded.

With a multiscale time-frequency dictionary of chirps [5], the author
suggested a much weaker two-step choice of the ``best'' atom of D. At first
we only consider a complete sub-dictionary D* of reasonable size, and
select the best atom g*m # D* by the greedy procedure (2). Then we try to
improve this choice by choosing a ``locally optimal'' atom gm # D with an
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interpolation method in a ``neighborhood'' of g*m . The final choice thus
complies with

|(Rm , gm) |�|(Rm , g*m) |= sup
g # D*

|(Rm , g) |. (5)

Such a stepwise choice gm # D is generally much weaker than (4), if no
additional assumption is made about D and D*. We call the corresponding
class of algorithms ``partially greedy algorithms''.

A partially greedy algorithm is ``stepwise better'' than a pure greedy algo-
rithm in D*. A natural question is whether such a choice of gm # D will
improve the speed of convergence, compared to a pure greedy algorithm in
D*. That is to say, if one is doing a pure greedy algorithm in D* (which
is known to converge), is it a good idea to get at each step a ``better atom''
in D? Does it ``take advantage'' of the extra redundancy given by D? The
intuition tells us that it should converge, may be with an improvement of
the speed of convergence. In finite dimension, the convergence of partially
greedy algorithms follows from standard compactness arguments.

The goal of this article is to show that the intuition is false in infinite
dimension. Not only the partially greedy algorithm can converge more
slowly than a pure greedy algorithm in D* (this is already known from a
counter-example of DeVore and Temlyakov [3], where D* is an orthonor-
mal basis and D=D* _ [g0] with g0 a ``bad'' vector), but it may not
converge at all. We show this by building a counter-example.

In Section 2, we give a precise statement of the natural conjecture, and
define the notion of (pure and partially) greedy sequence. In Section 3 we
build a partially greedy sequence that is our counter-example. In Section 4
we make some comments about the implications of our result.

2. GREEDY ALGORITHMS AND SEQUENCES

The natural conjecture about partially greedy algorithms is the following

Conjecture 2.1. Let D*/D two complete dictionaries in a Hilbert
space H. Let [Rm]m�1 be such that, for all m, (1) holds with some gm # D

chosen such that (5) is true. Then &Rm&2 � 0.

If this conjecture were true, then it should be true when D*=B is an
orthonormal basis of H and D#B is any dictionary containing this basis.
It would imply the following result.
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Conjecture 2.2. Let B=[en , n # N] an orthonormal basis of H, and
define for any x # H : &x&� :=supn # N |(x, en) |. Let [Rm]m�1 a sequence
such that for all m�m0 ,

(Rm , Rm+1) =&Rm+1&2
2 (6)

and

&Rm&2
2&&Rm+1&2

2�sup
n # N

|(Rm , en) |2=&Rm&2
� . (7)

Then &Rm&2 � 0.

Proof. Let Rm comply with (6) and (7). We shall prove that (1) and (5)
hold for m�m0 , for some dictionary D that we will specify later on. As the
convergence is an asymptotic property, it is clear that we can replace, in
Conjecture 2.1, ``(1) and (5) hold for all m'' by ``(1) and (5) hold for all
m�m0 ''. Thus, if Conjecture 2.1 is true, we will get &Rm &2 � 0.

Let us define

gm :=(Rm&Rm+1)�&Rm&Rm+1&2 (8)

and

D :=B _ [gm , m # N]. (9)

From the definition of gm , Rm=$mgm+Rm+1 for some $m . From (6) we
get (Rm+1 , gm) =0, thus $m=(Rm , gm) , which shows (1).

Now (7) gives |(Rm , gm) |2=&Rm &2
2&&Rm+1&2

2�supek # B |(Rm , ek) | 2

which shows (5). K

This enables us to only deal with properties of sequences in H : we can
forget about the algorithmic nature of the iterative decomposition. We will
call greedy sequence any sequence Rm in H complying with (6). A greedy
sequence that additionally complies with (7) will be called a partially
greedy sequence, by opposition to a pure greedy sequence which is sup-
posed to satisfy the stronger condition (which is equivalent to (2))

&Rm&2
2&&Rm+1&2

2�sup
g # D

|(Rm , g) |2.

We shall prove that Conjecture 2.1 is false by building a counter-example
to Conjecture 2.2, that is to say a partially greedy sequence Rm such that
&Rm&2 is bounded from below by some c>0.
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3. A COUNTER-EXAMPLE

For convenience, our counter-example [Rm]m�1 will be defined through
its normalization Sm :=Rm �&Rm &� in &.&� . Let us first show that, for any
*>0 and any sequence [Sm]m�1 such that &Sm &�=1 there is a unique
sequence

Rm=&Rm&� Sm .

such that (6) holds and &R1&�=*. It is done by proving that the sequence
of norms [&Rm&�]m�1 is defined by * and the sequence [Sm]m�1 , which
comes from the fact that (6) is equivalent to

&Rm+1&� �&Rm&�=(Sm+1 , Sm)�(Sm+1 , Sm+1). (10)

Condition (7) on [Rm]m�1 then becomes a condition on [Sm]m�1

(Sm , Sm) &
(Sm+1 , Sm) 2

(Sm+1 , Sm+1)
�1. (11)

Let us remark that for any greedy sequence, [&Rm&2]m�1 is a decreasing
positive sequence, hence it has a limit. For a partially greedy sequence, the
fact that (7) holds for m�m0 thus implies &Rm &� � 0. Suppose now that
[Rm]m�1 is a counter-example to Conjecture 2.2, which is equivalent to
lim &Rm&2>0 : [Rm]m�1 corresponds to some ``bad'' sequence [Sm]m�1

complying with (11) such that

&Rm&2=&Rm&�&Sm&2�c, (12)

where &Rm&� is defined through (10) and c>0 is some constant. Hence we
must have &Sm&2 � �.

We are going to specify some badly behaved sequence [Sm]m�1 of
vectors, such that &Sm&�=1, &Sm&2 � �, and (11)�(12) hold. Our setting
is now H=l2 (N) and we define, for 0<=<1

S(=) :=[(1&=)n]n�0 . (13)

One can easily check that &S(=)&�=1 and for all 0<=, '<1,

(S(=), S(')) = :
�

n=0

((1&=)(1&'))n=(=+'&=')&1=

1
=

1
'

1
=
+

1
'

&1
. (14)

132 R. GRIBONVAL



In particular

&S(=)&2
2=(2=&=2)&1. (15)

Using this family of ``bad vectors'' we can now build the counter-example
we have announced.

Proposition 3.1 Let H=l2 (N) and B its canonical basis. Let : > 2
and =m=m&:. Let Sm=S(=m). Let Rm=&Rm&� Sm where [&Rm&�]m�1 is
inductively defined by (10), with an arbitrary initial value &R1 &�>0. Then
[Rm]m�1 is a counter example, that is to say : there exists m0 # N such that
for all m�m0 , relations (6) and (7) hold, and

_c>0, \m, &Rm&2�c. (16)

Notations. We use the symbol am �� bm to denote the existence of con-
stants c and C such that cam�bm�Cam for m big enough. The notation
am tbm means that am�bm � 1. Finally am=O(bm) is written when am�bm

is bounded.

Proof. Using (14) we get (Sm , Sm) =m2:�(2m:&1), (Sm+1 , Sm+1) =
(m+1)2:�(2(m+1):&1) and (Sm+1 , Sm)=m: (m+1):�(m:+(m+1):&1)
from which we derive

(Sm , Sm)&
(Sm+1 , Sm) 2

(Sm+1 , Sm+1)

=
m2:

2m:&1
&

2(m+1):&1
(m+1)2:

m2: (m+1)2:

(m:+(m+1):&1)2

=
m2: [(m:+(m+1):&1)2&(2(m+1):&1)(2m:&1)]

(2m:&1)(m:+(m+1):&1)2

=
m2: ((m+1):&m:)2

(2m:&1)(m:+(m+1):&1)2

t
m:

8
((1+1�m):&1)2 �� m:&2 (17)

which proves that (11) is true for m greater than or equal to m0 (for some
m0).

From (15) we know that &Sm&2
2 t1�(2=m) �� m:. It is thus sufficient to

prove that &Rm&� �� m&:�2 to obtain (12) and reach our conclusion. To get
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this result we use the sequence vm :=log(&Rm+1&� �&Rm&� ), m�1 and
show that

vm+
:
2

log
m+1

m
=O(m&2). (18)

Indeed, from (10) we have vm=log(Sm+1 , Sm)&log(Sm+1 , Sm+1) , thus
using (14) we get

vm+log
=m+=m+1

2=m+1

=log
1

=m+=m+1&=m =m+1

+log 2=m+1\1&
=m+1

2 +
+log

=m+=m+1

2=m+1

=log \1&
=m+1

2 +&log \1&
=m=m+1

=m+=m+1 +=O(m&:).

(19)

Moreover, one easily gets

log
=m+=m+1

2=m+1

=log _1+
1
2

((1+1�m):&1)&=
:

2m
+O(m&2). (20)

As 1�m=log(m+1)&log m+O(m&2), and :>2, (19) and (20) lead to
(18). To finish with, (18) gives by a telescoping sum that

log \&Rm&�

&R1&� ++
:
2

log m= :
m&1

k=1
\vk+

:
2

log
k+1

k + (21)

has a limit K # R, which proves that

&Rm&� m:�2 � C>0. (22)

4. COMMENTS AND CONSEQUENCES

This counter-example gives some additional information on the proper-
ties of partially greedy sequences. Let us state some (known) results about
greedy sequences

Lemma 4.1 Let [Rm]m�1 be any partially greedy sequence. If � &Rm&
Rm+1&2 <� then &Rm&2 � 0.
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Proof. As H is complete, � &Rm&Rm+1&2<� implies the (strong)
convergence of [Rm]m�1 to some R� # H. But we have seen that
&Rm&� � 0 because of (7). Fatou's lemma thus gives R�=0.

The counter-example we have built must thus comply with � &Rm&
Rm+1&2 =�. On the other hand, it is easy to see that

Lemma 4.2 For every greedy sequence [Rm]m�1 ,

: &Rm&Rm+1&2
2<�.

Proof. The stepwise orthogonal decomposition (1) implies a stepwise
energy conservation &Rm&2

2=&Rm&Rm+1&2
2+&Rm+1&2

2 , which gives � &Rm

&Rm+1&2
2�&R1&2 by a telescoping sequence argument. K

We currently know that, for any counter-example to Conjecture 2.2:

: &Rm&Rm+1&2=� (23)

: &Rm&Rm+1&2
2<�. (24)

What about the convergence of � &Rm&Rm+1& p
2 , 1<p<2? The par-

ticular counter-example we built in Proposition 3.1 does show that such a
convergence is not sufficient to ensure the strong convergence of Rm to
zero.

Lemma 4.3. The counter-example [Rm]m�1 to Conjecture 2.2 built in
Proposition 3.1 complies, for all p>1, with

: &Rm&Rm+1& p
2 <�.

Proof. We show that &Rm&Rm+1&2
�� m&1, which gives the result.

Using the asymptotic rates (17) and (22) we get

&Rm&Rm+1 &2
2= &Rm&2

2&&Rm+1 &2
2

= &Rm&2
� ((Sm , Sm) &(Sm+1 , Sm) 2�(Sm+1 , Sm+1) )

�� m&:m:&2=m&2. K

We know from [10] that, for any counter-example to Conjecture 2.2,
� tm�m<�, where we use (8) and (9) to define

tm :=
|(Rm , gm) |

supg # D |(Rm , g) |
=

&Rm&Rm+1&2

supg # D |(Rm , g) |
. (25)
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We would like to know whether we can find any counter-example to
Conjecture 2.2 such that � t2

m=�. It would show that � t2
m=� is not a

sufficient condition to ensure the convergence of weak greedy algorithms.
Let us start by studying the asymptotic behavior of tm for any partially

greedy sequence [Rm]m�1 . It is actually easy to see that tm=&Rm&
Rm+1&2 �supp |(Rm , gp) | where gp=(Rp&Rp+1)�&Rp&Rp+1 &2 . For each
p, one can write

|(Rm , gp) | 2

=
_&Rm&� &Rp&� \(Sm , Sp) &

(Sp+1 , Sp)
(Sp+1 , Sp+1)

(Sm , Sp+1)+&
2

&Rp&Rp+1&2
2

=&Rm&�
2
\(Sm , Sp)&

(Sp+1 , Sp)
(Sp+1 , Sp+1)

(Sm , Sp+1)+
2

(Sp , Sp)&
(Sp+1 , Sp)

(Sp+1 , Sp+1)
(Sp , Sp+1)

so that

t2
m=

&Rm&Rm+1&2
2

&Rm&2
� Km

(26)

with Km=supp Km, p and

Km, p=
\(Sm , Sp)&

(Sp+1 , Sp)
(Sp+1 , Sp+1)

(Sm , Sp+1)+
2

(Sp , Sp)&
(Sp+1 , Sp)

(Sp+1 , Sp+1)
(Sp , Sp+1)

. (27)

Let us now restrict the study to the very specific case of sequences
[Rm]m�1 which associated sequence [Sm]m�1 can be written as
[S(1�um)]m�1 (using definition (13)). We know that if [Rm]m�1 is a
counter-example to Conjecture 2.2, then &S(1�um)&2 � �, which shows
that um � � thanks to (15). Let us show that it implies � t2

m<�.

Lemma 4.4. For any sequence um � �, there exists 0<;1<;2<�,
'>0, and m0 # N, such that for all m�m0 there exists pm # N complying
with

upm
# [;1um , ;2um] (28)

upm+1 � [(1&')�(1+') um , (1+')�(1&') um] (29)

136 R. GRIBONVAL



Proof. For every '>0 and x>0, denote I' (x) the interval [(1&')�
(1+') x, (1+')�(1&') x]. Suppose the conclusion is false. The we know
that for every 0<;1<;2<�, every '>0 and every M, there exists m�M
such that for all p, up # [;1um , ;2um] O up+1 # I' (um). Let us take ;1=
(1&')�(1+') and ;2=(1+')�(1&'), for some arbitrary '. In this case,
we know that, for some m, for all p, up # I' (um) O up+1 # I' (um). But we
also know that um # I' (um), so it becomes clear that by induction, f (n) #
I' (um) for all n�m, which is in contradiction with um � �.

Proposition 4.1. For every partially greedy sequence which can be
written as Rm=&Rm&� S(1�um) and is a counter-example to Conjecture 2.2,
we have

tm �� &Rm&Rm+1&2 ,

hence

: t2
m<�.

Proof. One can check that

Km, p=u2
m

2up&1
(up+um&1)2 \ up+1&um

up+1+um&1+
2

. (30)

It is then easy to show that

Km=sup
p, m

Km, p�
u2

m

2um&1
tum �2. (31)

Moreover, using Lemma 4.4, one gets a sequence pm such that

Km, pm
�u2

m

2;1um&1
((;2+1) um&1)2 '2

t
2;1'2

;2
2

um (32)

which shows that Km �� um . From (15) this becomes Km �� &S(1�um)&2
2 thus,

using (26), we get

t2
m

�� &Rm&Rm+1 &2
2 �(&Rm&2

� &S(1�um)&2
2)=&Rm&Rm+1&2

2 �&Rm &2
2

which finally gives t2
m

�� &Rm&Rm+1 &2
2 using (12). We get the square

summability of tm from Lemma 4.2. K
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5. CONCLUSION

The family of potential counter-examples Rm=&Rm&� S(=m) that we
have built does not discard the possibility that � t2

m=� might be a suf-
ficient condition to ensure the convergence of a weak greedy algorithm.
These counter-examples show that too weak a choice of gm in a greedy
algorithm can prevent the algorithm from converging. However, some of
our numerical experiments [5] do show convergence of a partially greedy
algorithm in the multiscale time-frequency dictionary of Gaussian chirps D,
with an improvement of the speed of convergence compared to a pure
greedy algorithm in the multiscale Gabor dictionary D*. One simple
reason for the convergence is that numerical experiments use finite dimen-
sional data. But this does not explain the improvement in the rate of con-
vergence. The reason for the good behaviour of this algorithm still has to
be investigated. It may be due to the particular structure of D* and D

and�or to the properties of the choice functional R [ g(R) which defines a
particular set of partially greedy sequences Rm+1=Rm&(Rm , g(Rm))
g(Rm).
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